人才队伍
副研究员
2012年6月毕业于中国科学技术大学。主要开展大面积单晶铜可控制备,石墨烯、过渡金属硫族化合物等二维材料高品质制备及其光学特性研究。主持国家自然科学基金、中国科学院“西部之光”、重庆市人才计划等项目,并作为主要人员参与863、工业强基、自然基金重点等国家重大研究项目。在国际知名学术期刊已发表论文17篇,单篇最高引用次数超过469次;撰写《石墨烯薄膜与柔性光电器件》专著1部。获得国家授权发明专利12项,其中3项专利成功转化。研制了具有自主知识产权的国内首条年产100万平方米的单层石墨烯薄膜生产线。参与的“大面积单层石墨烯薄膜生长方法与规模化制备技术”项目获得重庆市2015年度科学技术发明一等奖(2/6);以主要完成人参与的“基于石墨烯触摸屏的关键技术及应用”项目获得2015年度吴文俊人工智能科学技术奖一等奖(5/15)。获得中国科学院西部之光人才项目、重庆市高层次人才“青年拔尖”人才项目支持。
微纳制造与系统集成研究中心
二维材料可控制备、金属箔单晶化处理、光电器件
[1] 大面积单层石墨烯薄膜生长方法与规模化制备技术, 重庆市人民政府, 技术发明一等奖,2015年度
[2] 基于石墨烯触摸屏的关键技术及应用, 中国人工智能学会, 科技进步奖一等奖,2015年度
[3] 2016年被选为中国科学院“西部之光”二十年人才项目成长典范
[1] Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; Qin, T.; Zhou, D.; Shen, J.; Sun, J.; Feng, S.; Zhu, M.; Kentsch, U.; Zhou, S.; Shi, H.; Wei, X., Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon. ACS Nano 2022.
[2] Huang, D.; Duan, Y.; Zhang, L.; li, X.; Zhang, Y.; Ding, F.; Guo, J. Huang, X.; Li, Z.*; Shi, H., Graphene Growth across the Twin Boundaries of Copper Substrate. Advanced Functional Materials 2022, 32(42), 2202415.
[3] Zhang, Y.; Huang, D.; Duan, Y.; Chen, H.; Tang, L.; Shi, M.; Li, Z.*; Shi, H., Batch production of uniform graphene films via controlling gas-phase dynamics in confined space. Nanotechnology 2021, 32 (10), 105603.
[4] Nong, J.; Tang, L.; Lan, G.; Luo, P.; Li, Z.; Huang, D.; Yi, J.; Shi, H.; Wei, W., Enhanced Graphene Plasmonic Mode Energy for Highly Sensitive Molecular Fingerprint Retrieval. Laser & Photonics Reviews 2021, 15 (1), 2000300.
[5] Nong, J.; Tang, L.; Lan, G.; Luo, P.; Li, Z.; Huang, D.; Shen, J.; Wei, W., Combined Visible Plasmons of Ag Nanoparticles and Infrared Plasmons of Graphene Nanoribbons for High-Performance Surface-Enhanced Raman and Infrared Spectroscopies. Small 2021, 17 (1), 2004640.
[6] Li, Z.; Zhang, Y.; Duan, Y.; Huang, D.; Shi, H., The Effect of Ethanol on Abnormal Grain Growth in Copper Foils. Nanomaterials (Basel) 2021, 11 (11).
[7] Zhou, Q.; Shen, J.; Liu, X.; Li, Z.; Jiang, H.; Feng, S.; Feng, W.; Wang, Y.; Wei, D., Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. Nanotechnology 2019, 30 (19), 195202.
[8] Wang, B.; Cunning, B. V.; Kim, N. Y.; Kargar, F.; Park, S.-Y.;Li, Z.; Joshi, S. R.; Peng, L.; Modepalli, V.; Chen, X.; Shen, Y.; Seong, W. K.; Kwon, Y.; Jang, J.; Shi, H.; Gao, C.; Kim, G.-H.; Shin, T. J.; Kim, K.; Kim, J.-Y.; Balandin, A. A.; Lee, Z.; Ruoff, R. S., Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials 2019, 31 (29), 1903039.
[9] Zhang, E.; Sun, T.; Ge, B.; Zhang, W.; Gao, X.; Jiang, H.; Li, Z.; Liu, G.; Shen, J., High-performance solar-blind photodetector with graphene and nitrogen-doped reduced graphene oxide quantum dots (rGOQDs). Materials Express 2018, 8 (1), 105-111.
[10] Whelan, P. R.; Huang, D.; Mackenzie, D.; Messina, S. A.; Li, Z.; Li, X.; Li, Y.; Booth, T. J.; Jepsen, P. U.; Shi, H.; Bøggild, P., Conductivity mapping of graphene on polymeric films by terahertz time-domain spectroscopy. Opt Express 2018, 26 (14), 17748-17754.
[11] Wang, B.; Luo, D.; Li, Z.; Kwon, Y.; Wang, M.; Goo, M.; Jin, S.; Huang, M.; Shen, Y.; Shi, H.; Ding, F.; Ruoff, R. S., Camphor-Enabled Transfer and Mechanical Testing of Centimeter-Scale Ultrathin Films. Advanced Materials 2018, 30 (28), 1800888.
[12] Wang, B.; Li, Z.; Wang, C.; Signetti, S.; Cunning, B. V.; Wu, X.; Huang, Y.; Jiang, Y.; Shi, H.; Ryu, S.; Pugno, N. M.; Ruoff, R. S., Folding Large Graphene-on-Polymer Films Yields Laminated Composites with Enhanced Mechanical Performance. Advanced Materials 2018, 30 (35), 1707449.
[13] Zhao, Z.; Jia, K.; Shaw, J. C.; Zhu, Z.; Wan, W.; Zhan, L.; Li, M.; Wang, H.; Chen, X.;Li, Z.; Chen, S.; Zhou, Y.; Kaner, R. B.; Cai, W., Synthesis of sub-millimeter Bi-/multi-layer graphene by designing a sandwiched structure using copper foils. Applied Physics Letters 2016, 109 (12), 123107.
[14] Choi, J.-H.; Li, Z.; Cui, P.; Fan, X.; Zhang, H.; Zeng, C.; Zhang, Z., Drastic reduction in the growth temperature of graphene on copper via enhanced London dispersion force. Scientific Reports 2013, 3 (1), 1925.
[15] Li, Z.; Zhang, W.; Fan, X.; Wu, P.; Zeng, C.; Li, Z.; Zhai, X.; Yang, J.; Hou, J., Graphene Thickness Control via Gas-Phase Dynamics in Chemical Vapor Deposition. The Journal of Physical Chemistry C 2012, 116, 10557–10562.
[16] Li, Z.; Cai, H.; Han, Z.; Zhang, K.; Pan, N.; Wang, X.; Zhai, X.; Zeng, C., Symmetry-Dependent Plasmonic Properties of Three-Dimensional Hybrid Metallic Nanostructure Arrays. The Journal of Physical Chemistry C 2012, 116 (33), 17781-17786.
[17] Li, Z.; Wu, P.; Wang, C.; Fan, X.; Zhang, W.; Zhai, X.; Zeng, C.; Li, Z.; Yang, J.; Hou, J., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano 2011, 5 (4), 3385-3390.
学术专著:
[1]史浩飞; 李占成 ; 石墨烯薄膜与柔性光电器件, 华东理工大学出版社, 2021